

DIGSILENT PowerFactory 2017

What's New

INTEGRATED POWER SYSTEM ANALYSIS SOFTWARE FOR TRANSMISSION / DISTRIBUTION / INDUSTRY / GENERATION / INTEGRATION OF RENEWABLES

Publisher:

DIgSILENT GmbH Heinrich-Hertz-Straße 9 72810 Gomaringen / Germany Tel.: +49 (0) 7072-9168-0 Fax: +49 (0) 7072-9168-88 info@digsilent.de

Please visit our homepage at: http://www.digsilent.de

Copyright © 2016 DIgSILENT GmbH

All rights reserved. No part of this publication may be reproduced or distributed in any form without written permission of DIgSILENT GmbH.

> December 2016 r3343

Contents

1	Introdu	uction		1
2	Handli	ng and Da	ata Management	2
	2.1	Redesig	n of the Output Window	2
	2.2	Project (Combination	2
	2.3	Snapsho	ot Export	3
3	Netwo	rk Diagrar	ns and Graphic Features	4
	3.1	Diagram	Layout Tool	4
		3.1.1	Layout of Feeders	4
		3.1.2	Drawing of Branches	5
		3.1.3	Drawing of Protection Devices	5
	3.2	Represe	entation of Site Model	6
	3.3	Geograp	phic Diagrams	7
	3.4	Visualisa	ation of Tie Open Points	8
	3.5	Backgro	und Maps	9
	3.6	Anti-Alia	sing	10
4	Analys	sis Functio	ns	11
	4.1	Load Flo	ow Analysis	11
		4.1.1	Consideration of active/reactive power limits according to model type .	11
		4.1.2	Unbalanced Feeder Load Scaling	11
		4.1.3	Power Frequency Control using Merit Order	12
	4.2	Short-Ci	rcuit Analysis	12
		4.2.1	Provision of IEC 60909 2016 Edition	12
		4.2.2	Performance Optimisation (Complete Method)	13
		4.2.3	Option to Omit Transient Calculations (Complete Method)	13
	4.3	Power Tr	ransfer Events	13
	4.4	Continge	ency Analysis	14
		4.4.1	Contingency Analysis Execution from Graphic	14
		4.4.2	Power Transfer Events in Contingency Analysis	14
	4.5	Quasi D	ynamic Simulation	15
		4.5.1	User Defined Quasi-Dynamic Simulation Models	15

		4.5.2	Support of various simulation events	16					
	4.6	Network	Reduction	17					
	4.7	Protectio	n	18					
		4.7.1	Protection Audit	18					
	4.8	Connection Request Assessment							
		4.8.1	Connection Request Assessment according to BDEW 2008 and VDE- AR-N 4105	20					
		4.8.2	Connection Request Assessment according to D-A-CH-CZ: Consider- ation of Generation	21					
	4.9	Distributi	on Network Tools	21					
	4.10	Outage F	Planning	22					
	4.11	Reliabilit	y Analysis	24					
		4.11.1	Protection Maloperation	24					
		4.11.2	Backward Recovery of Feeders in Primary Substations	24					
		4.11.3	Reliability Assessment within Meshed Distribution Networks	25					
	4.12	RMS/EM	T Simulation	26					
		4.12.1	Power Transfer Events in RMS simulations	26					
		4.12.2	Simulation Scan: Fault Ride Through	26					
		4.12.3	Retention of Load Flow results after Initialisation	28					
		4.12.4	Additional DSL functions	28					
		4.12.5	Support of external models acc. to IEC 61400-27-1 (2015)	28					
5	Power	Equipmen	It Models	30					
	5.1	4-Windin	g Transformer Model	30					
	5.2	Automati	c Tap Adjustment according to Compounding	30					
	5.3	Harmoni	c Filter Element	31					
	5.4	Step-Vol	tage Regulator	32					
	5.5	Power Fr	equency Controller - Merit Order Mode	33					
	5.6	Line Type	es for Busbar Trunking Systems	33					
	5.7	PWM Co	nverter - Third Harmonic Injection	34					
	5.8	Fuse witl	n Neutral has Option to Interrupt Neutral	34					
6	Scriptir	ng and Au	tomation	35					
	6.1	Text Edit	or	35					
	6.2	Add-On Modules							

7	Interfaces								
	7.1	CGMES Converter							
		CGMES Conversion Performance Improvements							
		7.1.2 Incremental Load of CIM data							
		7.1.3 Memory Only Export							
		Automatic Handling of Equivalent Boundary Network Injections 38							
	7.2	ntegral Export Converter							
	7.3	OPC Unified Architecture							
8	Installa	on and Licensing							
	8.1	Support of Floating Licences							

1 Introduction

This document highlights the new key features and enhancements available in *PowerFactory 2017*, which continues the annual cycle of *PowerFactory* releases.

A range of improvements have been made to the handling and data management with a series of additional convenience functions. The new version also comes with a series of enhancements to the network diagrams and graphic representation tools. A special focus in development has been on the various analysis function capabilities of *PowerFactory*. This includes a number of new power equipment models and extensions to existing ones. Most notably, further modelling flexibility has been provided with the inclusion of user-defined models for load flow and quasi-dynamic simulation.

Key highlights of *PowerFactory 2017* include the following:

- Enhanced Diagram Layout Tool for auto-drawing of feeders and branches, protection device layout, as well as auto-layout of site and substation diagrams
- · Output window redesigned to be interactive, with flexible filter functionality
- Add-on Modules: new framework for user-extendable function scope including fully integrated result representation
- · New Project Combination and Connection Assistant
- Various new and enhanced Power Equipment Models (harmonic filters, busbar trunking systems, voltage regulator, 4-winding transformer, power frequency control using merit order)
- New QDSL modelling language: User-definable load flow and quasi-dynamic simulation models
- Unbalanced Feeder Load Scaling
- · IEC 60909 Update 2016 edition (available in upcoming Service Pack)
- · New Protection Audit validation tool for protection settings and configurations
- · Connection Request Assessment according to BDEW 2008 and VDE AR-N-4105 guidelines
- New optimisation methods for Tie Open Point and Phase Balance Optimisation: genetic algorithms and simulated annealing
- · Extension of failure models and power restoration strategies for Reliability Analysis
- New Outage Planning module
- Extension of simulation scan by Fault Ride Through verification
- · IEC 61400-27-1 interface for external dynamic models
- · CGMES interface: functional extensions and performance improvements
- New Integral export function

With its continually-updated analysis and modelling capabilities, *PowerFactory 2017* is perfectly suited to network planning and operation studies, from small micro grids and distribution networks with distributed generation to larger transmission systems, taking new HVDC technologies and renewable generation into account.

Also, with its flexibility for scripting and interfacing, *PowerFactory 2017* is perfectly suited to highly automated and integrated solutions in your business applications.

2 Handling and Data Management

2.1 Redesign of the Output Window

PowerFactory 2017 comes with a redesigned output window, making the handling of messages more intuitive and user-friendly.

In the new output window, shown in figure 2.1, the messages are not only coloured, but icons are also used to indicate the category (error, warning, info, events,...); these categories can be filtered using the predefined filtering tabs. There is also a text filter, to find specific text strings in the output messages.

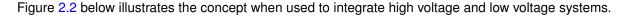

	or (?) ▲ Warning (?) ● Info (44) ● Event (?) ● Other (?0) Soad flow iteration: 10 o convergence in load flow! Soad flow called the secured. Hence '* 0 Cl' is load it reference in separated area of '* Bus 1' alculating load flow	004°
0 0 0 0 0 0 0 0 0 0 0	tart Werton-Paphicon Algorithm odd flow iteration: 1 odd flow iteration: 2 odd flow iteration: 3 odd flow iteration: 4 odd flow iteration: 4 Begort of Control Condition for Pelevant Controllers merch (* 0.01: 3 local reference in secarated area of '**Phase 1' Ament '* 0.01: 3 local reference in secarated area of '**Phase 1'	Ø
000000000000000000000000000000000000000	leenet (* 0 Cl) is reference in 60,0 Hz-system t=-100:000 ms) Thital conditions calculated. T=-100:000 ms) Thital conditions calculated. T=-100:000 ms) Thital conditions calculated. (* For (*) * Struct-Teacher T=-100:000 ms) Element * © Cl • Short-clcuit calculation successfully executed! • Load flow calculation not executed.	

Figure 2.1: Output window

2.2 Project Combination

Responding to customer requirements for a user-friendly method for combining two or more projects, a new process has been developed in *PowerFactory 2017*. There are two steps in the process, using these tools:

- **Project Combination Assistant:** this creates a new "combined" project from two or more source projects. Initially, after this first step, the constituent grids are separate from one other.
- **Project Connection Assistant:** this is used to connect the separate grids together, with options to identify the connection points using fictitious nodes or elements (switches) identified by their corresponding foreign keys.

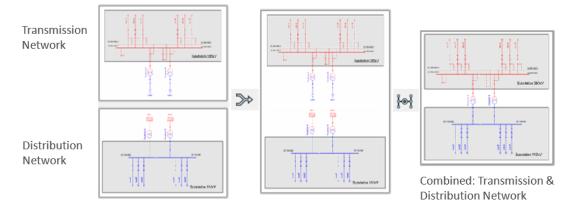


Figure 2.2: Creating a combined project from transmission and distribution networks

2.3 Snapshot Export

PowerFactory 2017 offers a new method for exporting and sharing project information. The Snapshot Export function enables the currently active status of a project to be exported, such that only the relevant objects are included. A project exported in this way is potentially a much smaller file, which nevertheless when reimported into **PowerFactory** can be used to reproduce analysis carried out in the original project study case.

Unlike the existing Project Export, where the project must first be deactivated, the Snapshot Export is performed on an active project. This way, *PowerFactory* can determine exactly which objects are active and which data are applicable as a result of an active scenario or active variations.

4	DigSiL	ENT Po	werFacto	ory 2017 -	[Graphi	c : Diagrams\Grid	.IntGrf	net]					
	FILE	EDIT	VIEW	INSERT	DATA	CALCULATION	OUT	PUT	TOOLS	WINDOW	HELP		
6		New Exampl	es				>	.	++ +		<u></u>	0	5
4		Activat	e Project					~	₩ ★	₽ ₽ [0) tit	\$ 8	
		Deactivate Project Activate Study Case Deactivate Study Case						NVC_Brunc Feese(LAT L_0					
		Activat Deactiv	ate Operation Scenario ivate Operation Scenario Operation Scenario				₹ •••		NW_Lra_01_2				
4		Import		Scenario	a3		>	10 MHI			20 J		
		Export	port			>		Data (*.pfd;*.dz)					
		Offline					>		Project Sr	napshot (*.d	zs)		
4		Printer	Setup					I	DGS Form	nat			

Figure 2.3: Executing a Snapshot Export

When the Snapshot Export is carried out, the resulting file outside *PowerFactory* has the file extension .dzs. It can be imported just like a .pfd or .dz file and when activated can be used to perform the usual calculations such as load flow or simulations. Furthermore, it is possible for merge processes to be carried out between it and the source project, for example if there is a need to include additional data from the source project.

3 Network Diagrams and Graphic Features

3.1 Diagram Layout Tool

In *PowerFactory 2017*, the Diagram Layout Tool has been completely redesigned and extended to include additional functions as shown in figure 3.1. The additional functions are described in the following subsections.

Diagram Layout Tool - Stu	idy Cases\0 - Base Model\Diagram Layout Tool.ComSgllayout	? ×
Action Node Layout Edge Elements Protection Devices	Action mode	Execute Close Cancel
	Insert elements into current diagram	

Figure 3.1: Redesign of the Diagram Layout Tool

3.1.1 Layout of Feeders

The new Diagram Layout Tool includes an option to generate complete new schematic feeder diagrams. There are several options related to the layout style and node spacing. There is also an option to consider backbones. Figure 3.2 shows a feeder diagram created using the Diagram Layout Tool.

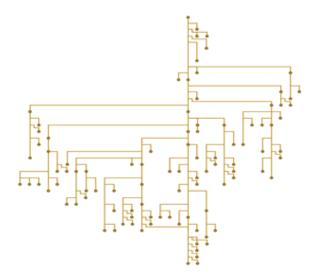


Figure 3.2: Feeder diagram

3.1.2 Drawing of Branches

With the enhanced Diagram Layout Tool it is possible to generate detailed representations of branches *ElmBranch*. Figure 3.3 shows a detailed diagram of a branch element generated using the Diagram Layout Tool.

÷	6	Ģ	0	•	13	679	6	~	⋓	1	-	П,	Q	::]
				14											
				- <u>8</u> ,	6 - E										
				. B	γî										
				- 5	1.1										
				.=											
					1.1										
										ā,					
				.[·					٩, I					
					€F ¹			6	ч :	5.					
								Č.,	1	Į.,					
					Г .					Ĩ.					
										¥ .					
				.ä.											
				E)	V (
				<u>۲</u>											
Ľ															
ľ															
		·										_			
K		Ŧ	• •		M	irid)	NE	Lne	e_0	2_0	3-1	/		<	

Figure 3.3: Branch diagram

3.1.3 Drawing of Protection Devices

Now the protection devices can be automatically drawn into the single line diagram by selecting the option *Auto-insert elements into current diagram* of the Diagram Layout Tool as shown in figure 3.4.

igram Layout Tool - Stu	dy Cases\Network Exercises 1-5\Diagram Layout 1	Tool.ComSgllayout *		? ×
Action	Action mode			Execute
lode Layout	C Generate new diagram			Close
dge Elements	 Auto-insert elements into current diagram 	m		
Protection Devices	C Assisted manual drawing			Cancel
	Generate new diagram for			
	💿 entire grid 🔍 🗸	Network Model\Network Dat	a\110 kV Grid	
	C detailed representation of			
	C feeder . 🔻 🔸			
	Insert elements into current diagram			
	C K-neighbourhood expansion			
	C Edge elements			
	Protection devices	Diagram Layout Tool - Stud	ly Cases\Network Exercises 1-5\Diagram Layo	ut Tool.ComSgllayout *
	Neighbourhood expansion	Action	✓ Insert protection devices	
	Start elements	k E Node Layout	✓ Relays	
	K = 1 4	Edge Elements	CTs and VTs	
		Protection Devices		

Figure 3.4: Option to insert missing protection devices

It is possible to select to draw relays and/or current and voltage transformers. An example of automatically inserted protection devices is shown in figure 3.5

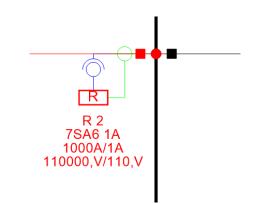


Figure 3.5: Protection devices in the single line diagram

3.2 Representation of Site Model

PowerFactory 2017 includes graphical representation of the Site element (*ElmSite*). A Site is normally used to group network components, for example, substations of different voltage levels at the same location.

The Site can be represented by a square or a circle and geographical coordinates can be defined in order to show it in the geographic diagram. Figure 3.6 shows a representation of a site element in the single line diagram and the geographic diagram.

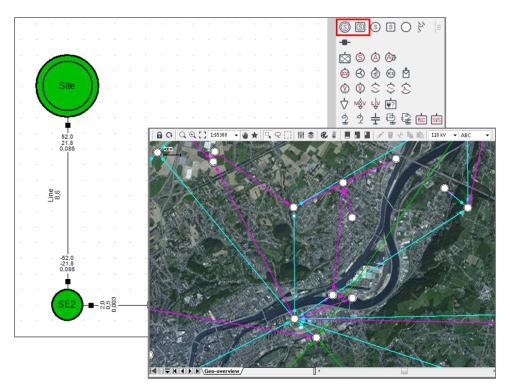


Figure 3.6: Site representation

When a Site is defined, a detailed diagram is automatically created. The user can then draw all the elements directly inside the Site diagram, using detailed substation diagram templates for drawing the site content. If the Site already exists it is possible to use the Diagram Layout Tool to automatically generate its detailed representation. Figure 3.7 shows an example of a site diagram consisting of two substation diagrams.

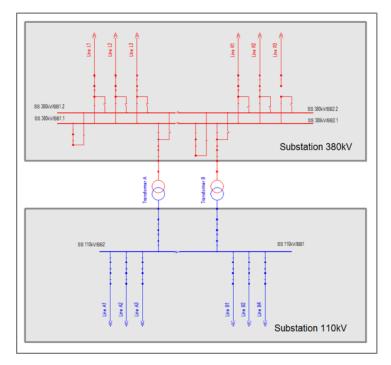


Figure 3.7: Detailed diagram of a Site

3.3 Geographic Diagrams

With *PowerFactory 2017* all elements can now be represented in the geographic diagram, including loads, generators and transformers.

Figure 3.8 shows an example of a geographic diagram. The Diagram Layout Tool can be used to automatically draw all the edge elements in the diagram.

Figure 3.8: Visualisation of loads in the geographic diagram

3.4 Visualisation of Tie Open Points

PowerFactory 2017 offers the possibility to visualise tie open points in network diagrams (geographic, single line and detailed). Tie open points are dynamically determined by the software as those open breakers which separate two different feeders. An example is shown in figure 3.9.

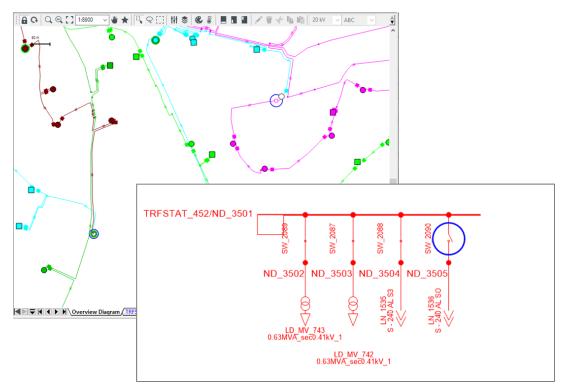


Figure 3.9: Visualisation of tie open points

The visualisation is done using a new layer called "Tie Open Points", which is by default visible and can be configured as shown in figure 3.10.

Graphic Layers - Diagrams\Overview Diagram\Settings\Graphic Layers.SetLevelvis * ? X										
Visibility	- Layer	Tie Open Points V	OK							
Configuration			Canc	el						
	Colour	4 ~								
	Fill									
	Size factor	1,								
	Line Width	0,4								

Figure 3.10: Tie Open Points Layer configuration

3.5 Background Maps

Besides usage of pre-configured built-in map services such as Google or OpenStreetmap, **PowerFac**tory 2017 supports the use of user-configured map services based on the standardised WMS/WMTS protocol, as background maps of the geographic diagram. The WMS are defined by the Administrator in the Configuration folder as shown in figure 3.11

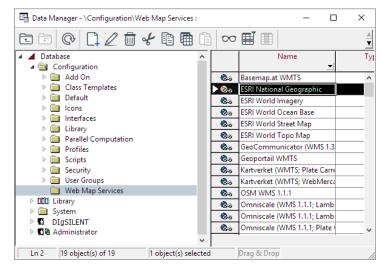


Figure 3.11: Web Map Services folder

Then the user can select the desired map by configuring the *Background* layer of the geographic diagram, as shown in figure 3.12

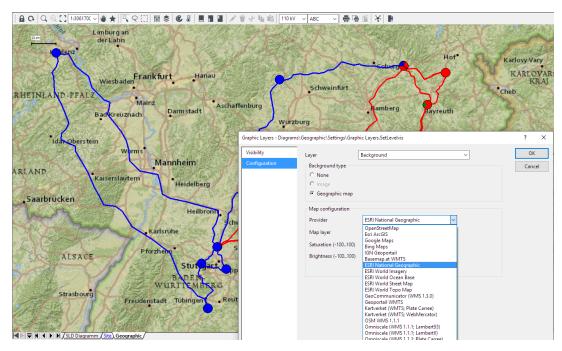


Figure 3.12: Background layer configuration

3.6 Anti-Aliasing

A new diagram setting has been provided that results in a slightly smoother and less pixelated look of the single line diagrams. This option can be activated in the User Settings, *Graphic Windows* page, via the new check-box *Enable anti-aliasing for single line diagrams*.

It should be noted that it is not recommended to enable this setting when working on projects with large diagrams, due to potential graphic performance issues.

4 Analysis Functions

4.1 Load Flow Analysis

Several enhancements to load flow analysis have been introduced in *PowerFactory 2017* and the opportunity has also been taken to rationalise the Load Flow Calculation dialog, making it easier for users to locate the parameters that they are interested in.

4.1.1 Consideration of active/reactive power limits according to model type

Under the existing load flow options it was already possible to select whether active power limits and/or reactive power limits should be considered. In *PowerFactory 2017* more flexibility has been introduced: users are now able to have the limits considered for some models and not for others.

Figure 4.1 below shows the options available.

Load Flow Calculation - Study	y Cases\00_Base Case\Load Flow Calculation.ComLdf *	? ×
Basic Options Active Power Control Advanced Options Calculation Settings Outputs Load/Generation Scaling	Tap Adjustment Operational Limits Simulation Advanced Considered Models for Active Power Limits Image: Considered Models for Active Power Limits Image: Considered Models for Active Power Limits Image: Considered Models for Active Power Limits Image: Considered Models for Active Power Limits Image: Considered Models for Active Power Limits Image: Considered Models for Active Power Limits Image: Considered Models for Active Power Limits Image: Considered Models for Active Power Limits Image: Considered Models for Active Power Limits Image: Considered Models for Active Power Limits Image: Considered Models for Active Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construct Formation Power Limits Image: Construc	Execute Close Cancel
Low Voltage Analysis	Considered Models for Reactive Power Limits Synchronous machine Static generator Asynchronous machine PWM converter Static Var system External grid	

Figure 4.1: Selective consideration of active and reactive power limits

4.1.2 Unbalanced Feeder Load Scaling

With *PowerFactory 2017* it is now possible to use feeder load scaling to separately scale each phase of unbalanced loads. This can be useful if, for example, measurements are available at the feeding points for the individual phases.

Using an unbalanced load flow, the option *Feeder Load Scaling* is selected and each phase is then scaled according to the options selected on the relevant feeder object as shown in figure 4.2

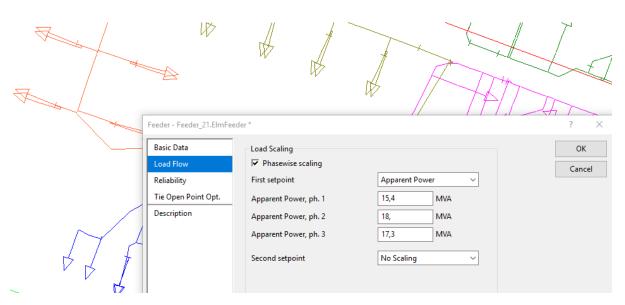


Figure 4.2: Feeder load scaling for unbalanced loads

4.1.3 Power Frequency Control using Merit Order

The existing load flow option for *Active Power Control* using a power frequency controller has been extended, to allow merit order dispatch of the group of slack generators. Generators with the highest merit order priority will be dispatched first, as far as their operational limits allow, then the generators with successively lower merit order priorities as required.

Section 5.5 gives more detail about the configuration of the controller and associated elements.

4.2 Short-Circuit Analysis

4.2.1 Provision of IEC 60909 2016 Edition

PowerFactory 2017 includes an additional option to work to the 2016 edition of the IEC 60909 (and VDE 0102) standard¹. The principal changes in the new edition are:

- · Short-circuit contributions from wind power station units are included
- · Short-circuit contributions from power station units with full-size converters are included

Within *PowerFactory*, this means that wind farms (*ElmGenstat*), solar systems (both *ElmGenstat* and *ElmPvsys*) and asynchronous generators (*ElmAsm*) will now all be supported in the short-circuit calculation, if the 2016 edition is selected.

Short-Circuit Calculation - Study Cases\00_Base Case\Short-Circuit Calculation.ComShc *									
Basic Options Advanced Options Verification	<u>M</u> ethod Fault Type C <u>a</u> lculate Max. Voltage To	IEC 60909 Vublished 3-Phase Short-Circuit V Max. Short-Circuit Currents V Ierance for LV-Systems 6 %	Execute Close Cancel Contents						

Figure 4.3: Short-Circuit Calculation command

¹available in upcoming service pack

4.2.2 Performance Optimisation (Complete Method)

The calculation of short-circuits using the Complete Method has been considerably optimised in *PowerFactory 2017*. This leads to improvements in the end-to-end execution times compared with *PowerFactory 2016*. As an example, reductions in run-time of around 30 per cent have been observed when analysing over 6000 short-circuits on a large transmission network; the reduction in execution time is more significant with unbalanced than with balanced faults.

4.2.3 Option to Omit Transient Calculations (Complete Method)

By default, transient and subtransient currents and associated parameters will be calculated when shortcircuit analysis is carried out using the Complete Method. However, the user now has the option to omit the transient calculations if these results are not required, leading to a shorter execution time.

4.3 Power Transfer Events

An additional event type is now available to the user when setting up events for Contingency Analysis, RMS Simulations or Planned Outages. Unlike the existing Load Event EvtLod, which is used to define real and reactive demand changes for an individual load, the Power Transfer Event EvtTransfer makes it possible to define post-fault power transfers between load objects (or static generators) on a relative basis. Figure 4.4 below shows how the Power Transfer Event is set up between loads. Only one source element is permitted per event, but the power can be distributed among several destination objects.

Power Tran		?	×				
Out of	Г	OK					
Execution							
	Absolute					Canc	el
hours	0	h					
minutes	0	min					
seconds	0,	s					
Source Destination	n of power transfer:		west\SW_Load_0	5			
Eli	Elements mLod*,ElmGenstat	Active Power %	Reactive Power %				
▶1 ≤ S	SW_Load_06	50,	50,	^			
				~			
<							
Sequence		0					

Figure 4.4: Power Transfer Event

4.4 Contingency Analysis

4.4.1 Contingency Analysis Execution from Graphic

The ability to execute a contingency directly from a graphic has been enhanced in *PowerFactory 2017*. The underlying assumption is that if a relevant fault case already exists in the project library then this should be used for the analysis. There are two options:

- Execution of a single contingency: In this case, a single contingency representing a fault on all the elements selected will be executed via a fault case. A fault case from the library will be used if present (the user will be offered a choice if there is more than one), otherwise a temporary fault case will be created and executed, with the calculation results being visible on the graphic or via an object filter.
- Contingency Analysis: In this case, fault cases for each selected element will be used to populate the Contingency Analysis command. For any elements for which no relevant fault cases are found in the library, n-1 fault cases will be created; these fault cases will be retained after the analysis has been executed.

The first option, *Execute single contingency*, offers an ideal way to examine individual cases from a large contingency sweep, without losing the results of the full calculation. The second option, provides an easy way of selecting from the library all relevant fault cases for a particular part of the network.

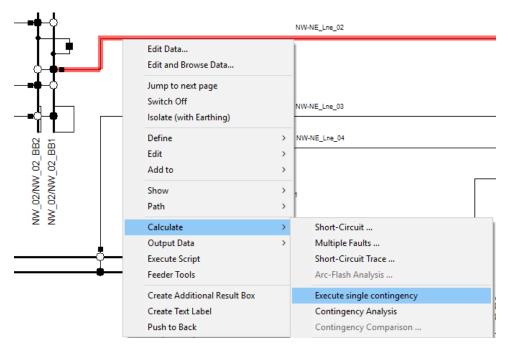


Figure 4.5: Contingency Analysis execution from graphic

4.4.2 Power Transfer Events in Contingency Analysis

Power Transfer Events (*EvtTransfer*), i.e. demand transfers defined on a relative basis, are now supported in Contingency Analysis. Section 4.3 describes the new object.

4.5 Quasi Dynamic Simulation

The Quasi-Dynamic Simulation is the optimal tool for performing medium to long term dynamic studies thereby incorporating network development and expansion defined via variations and characteristics. Previously being a pure load flow time sweep, the tool now enables the user to control the actions of network components during the simulation, based on information that is available at the respective time step.

There are several situations where the time dependency between consecutive steady states must be considered. Examples include:

- · Slow reacting controllers;
- Systems which have time constants comparable to or greater than the simulation time step (e.g. Transformer/shunt tap changers, etc);
- Certain quantities might be time dependent but cannot be provided as a time characteristic, i.e. its value is not known prior to executing the simulation. Consider, e.g., the state of charge of a battery system, fuel remaining/consumed in a diesel gen-set, etc.;

PowerFactory 2017 enables the user to include these dynamics in the simulation. As one major step towards this objective, we enable the user to code his own load flow model - even more, to extend it to a dynamic model incorporating state variables. Thus, the user can create customised controllers/models which can then be used in both Load Flow and Quasi-Dynamic simulations. The governing equations are completely customisable, using standard DPL code syntax.

4.5.1 User Defined Quasi-Dynamic Simulation Models

It is now possible to develop user defined Quasi-Dynamic Simulation models (QDSL models) using two newly developed objects *TypQdsl* and *ElmQdsl*. Users are given access to the model calculation algorithm through the application of user defined equations during:

- the Load Flow iteration: customisable equations that control various load flow quantities (e.g. voltage dependent active/reactive power output of loads/static generators) can be implemented.
- the Quasi-Dynamic Simulation time step advance: support for time dependent state variables and definition of their differential equations is included.(e.g. a control algorithm that decides whether a battery should charge or not depending on its state of charge).

Quasi-Dynamic Simulation Typ	e - User De	efined Models\Q	dsl Type.TypQdsl *				? ×
Basic Data	Equatio	ns Control					ОК
Results	🗆 Lin	ear model					Cancel
Initialisation	Input/	Outputs for load	flow equations:				
Load Flow		Name	Usage	Class name	Variable name	Bus name	Check
Quasi-Dynamic Simulation	▶1	Pset	Output	ElmGenstat	pset	^	
Description	2	u	Input	ElmTerm	u1		
		<	1			>	
	Load f	low equations					
	doub	ole Pgen, fa	ic;				
	if	(chargeU = 1	.) {				
				u)/(fullStoreU	<pre>J - startStoreU));</pre>		
	}	gen = -pini					
		e if (charge) / / atomt Foodu	<pre>- fullFeedU));</pre>		
		gen = pini *		// (scartreedu	- iuiireeu0));		
	} SetB	Equation (0.	Pset - ngen)	-I			
	}	-	fac; Pset - pgen)	1			

Figure 4.6: User-defined load flow equations in DPL style

Figure 4.7 shows the results of one practical example where a battery system is modelled including its charge controller, and the "state of charge" is one such state variable. As expected, the battery charges during the full sun hours (triggered by high AC terminal voltage) and discharges to a minimum afterwards.

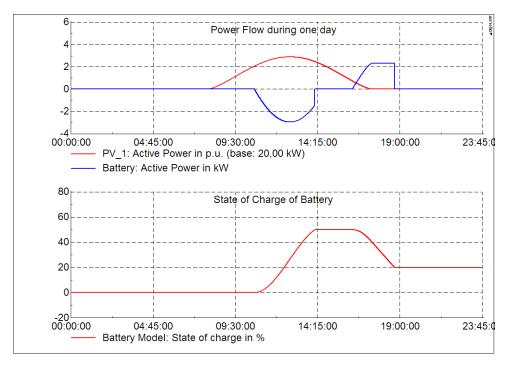


Figure 4.7: Battery state of charge during a one day cycle

4.5.2 Support of various simulation events

It is now possible to apply a multitude of user-defined simulation events in the quasi-dynamic simulation, such as switch events, dispatch events, load shedding/ramp events or parameter events. Furthermore, events can also be fired during a quasi-dynamic simulation by a QDSL model, depending on certain conditions (programmed in the model).

4.6 Network Reduction

With *PowerFactory 2016* a new network reduction method was introduced. This method, based on REI equivalents (Radial, Equivalent,Independent), allows elements of the network to be retained when performing a network reduction.

Until now this equivalent method was only suitable for load flow calculations. *PowerFactory 2017* includes the option of calculating the short-circuit equivalent of the network for both balanced and unbalanced representation, which now makes it possible to have an equivalent reduced network based not only on the load flow calculation results, but also on the short-circuit calculation (Complete Method) results.

Network Reduction - Study Cases\01- Load Flow\Netwo	'k Reduction.ComRed *	? ×
Basic Options Method Outputs Advanced Options Verification Boundary Load Flow Reduction of nonlinear elegators Synchronous generators Static generators Loads SVS Additional elements Greet Calculate short-circuit	Boundary ad Flow\Load Flow Calculation ements Retain all voltage controlled Reduce all Reduce all Teduce all	Execute Close Cancel

The new Network Reduction dialog is shown below in figure 4.8

Figure 4.8: Short-circuit equivalent option for the REI method

4.7 Protection

4.7.1 Protection Audit

Detailed verification of protection system performance can be an extremely time consuming task, especially when performed for larger network areas. Most graphical coordination tools can only work with one type of protection at a time (overcurrent, distance, etc.). Verification of the scheme and settings selected during a coordination study can involve a lot of repetitive analysis where important factors can easily be missed if the engineer does not maintain a high level of concentration.

A new function has been provided that automates many of the repetitive actions carried out by the engineer when verifying the performance of a protection scheme. Further, this function presents the results in such a way that they can quickly identify weakness in their scheme. The verification process involves the application of short-circuit calculations throughout a given network area. The user specifies the network area to be examined and then configures the fault cases to be applied. The protection devices responsible for each network element are determined automatically by the feature. The fault cases specified by the user are calculated at each network element at varying locations within the selected area and the reaction of all protection devices to those faults is recorded. Verification of results with respect to various criteria is performed as a secondary step and the outcome displayed in tabular form. Colouring of the tabular output is applied to assist in the assessment of the results.

Protection Audit - Study Case	es\Study Case\Protection Audit.ComProtaudit *	? ×
Basic Options Advanced Options	Network area	Execute Close
	Calculation commands Load Flow es\Study Case\Load Flow Calculation Short-Circuit rcuit Sweep\Short-Circuit Calculation Fault case definitions	Cancel
	Edit Add Remove All Considered network equipment Image: Generation Image: Branches Image: Generation Image: Busbars Image: Loads Step size for lines 10.	
	Results Result File ✓ ✓ Reporting Command ✓ Study Case\Protection Audit Results	

Figure 4.9: Protection Audit command dialog

The protection devices responsible for each network element are determined according to the circuit breakers they operate. The topological orientation of a circuit breaker with respect to the protected network elements is assessed to determine the next circuit breaker for consideration. Specific rules are applied to facilitate coordination over network elements requiring special consideration such as transformers.

Results can be checked against:

- · Fixed coordination margin
- · Coordination margin based on the downstream circuit breaker delay
- · Maximum allowed device tripping time
- · Maximum allowed fault clearing time

Different severities can be assigned to different conditions and locations. For example a coordination issue between main and backup protection can be considered more severe than a coordination issue between the second backup and an upstream device.

Protection Audit Results -	Study Cases\04 - Protection / AC Short-Circuit\Protection Audit Results.ComAuditreport	? ×
Basic Options	General Advanced	Execute
Device coordination Tripping times	Result selection Result file rotection / AC Short-Circuit\Protection (2)	Close
Fault clearing time	Options Image: Construct on the second se	Cancel
	Report Style Netork element oriented Protection device oriented	

Figure 4.10: Protection Audit Results command dialog

		3-Phase	2-Phase	2-Phase	Single Phase
Element	Summary	Short-Circuit	Short-Circuit	to Ground	to Ground
Line 1	Failure	ОК	ОК	Failure	Failure
Line 2	Warning	ОК	ОК	Warning	Warning
Transformer 1	Ok	ОК	ОК	ОК	ОК
Generator 1	OK	ОК	ОК	ОК	ОК
Line 3	OK	ОК	ОК	ОК	ОК

Fault Type	2-Phase to Gro	und	Resistance	9	5.0	Ohm						
Element	Line 1											
						F	ault Locatio	on				
Device	Role	Bus i	10%	20%	30%	40%	50%	60%	70%	80%	90%	Bus j
R1	Main (Bus i)	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,50	0,50	0,50
R2	Main (Bus j)	0,50	0,50	0,50	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
R5	Backup (R1)	0,40	0,40	0,40	0,40	0,40	0,75	0,75	0,75	0,75	0,75	0,75
R7	Backup (R2)	NO TRIP	NO TRIP	NO TRIP	1,10	1,10	1,10	0,75	0,75	0,40	0,40	0,40
R8	Backup (R2)	NO TRIP	NO TRIP	NO TRIP	1,10	1,10	1,10	0,75	0,75	0,40	0,40	0,40

4.8 Connection Request Assessment

4.8.1 Connection Request Assessment according to BDEW 2008 and VDE-AR-N 4105

The Connection Request Assessment has been enhanced with *PowerFactory 2017* to include assessments according to the guidelines BDEW 2008 (4th Supplement) and VDE-AR-N 4105. These apply to the connection of generating units at the MV and LV voltage levels, respectively. The assessments comprise: loading of network components, admissible voltage changes, sudden voltage changes and flicker, voltage unbalance, harmonics, interharmonics and audio-frequency ripple control, commutation notches and maximum short-circuit current. The use of complex load flow calculations in some of these assessments assists in providing accurate information on the effect of new installations on network conditions. The inclusion of the two new assessments makes the Connection Request Assessment in *PowerFactory* an invaluable tool for planners and network operators.

Connection Request Asse	ssment - Study Cases\Study Case\Connection Request Assessment.ComConreq	? ×
Connection Request Asse Basic Options Outputs	ssment - Study Cases\Study Case\Connection Request Assessment.ComConreq Method According to BDEW, 4th Supplement Calculations Loading of network components Admissible voltage changes Sudden voltage changes and flicker Harmonics, interharmonics and audio-frequency ripple control Commutation notches Maximum short-circuit current	? × Execute Close Cancel
	Agreed service voltage, Uc 20, kV	

Figure 4.13: Connection Request command dialog

Basic Data		Harmonics and	interha	armonics		Commutation notches Short-circuit curre				it curre	nt	ОК	
D-A-CH-CZ		Powerp	olant de	efinition		Sudden voltage changes and flicker							
3DEW, 4th Supplement	Volt	Voltage changes and flicker				-					Cancel		
/DE-AR-N 4105		Name	Тур	e Qty.	Flk. coe TypFlic		ss kir	max	lnG kA				Jump to
Description	►	1 Wind farm	DFIG	10, Flie	ker Coef	fficient Using I	tima	1,5	0,		^		
ker Coefficients - Equip:	ment Type	Library\Flicker	Coeffi	cients.TypFlicke	r								?
ker Coefficients - Equip asic Data	ment Type Name	Library\Flicker			r								? ОК
asic Data		-			r								ОК
		-	fficient	ts		Factor, kf(psi)	Voltage	Change	: Factor, ki	u(psi)			
asic Data		Flicker Coe	fficient	ts Coefficient, c(ps		Factor, kf(psi) 0,09		Change	: Factor, ki	u(psi) 0,91		^	ОК
asic Data	Name	Flicker Coe	efficient , psi C 30, 50,	ts Coefficient, c(p:	i) Step			Change	e Factor, ki			^	ОК
asic Data	Name	Flicker Coe	efficient ; psi 0 30,	ts Coefficient, c(ps	i) Step ,7	0,09		Change	e Factor, ki	0,91		_	ОК

Figure 4.14: Connection Request element dialog, BDEW page

4.8.2 Connection Request Assessment according to D-A-CH-CZ: Consideration of Generation

With *PowerFactory 2017* the Connection Request Assessment according to D-A-CH-CZ has been enhanced to consider generating units. The connection request element now additionally allows the definition of a generating station with multiple generating units. Each type of generating unit can have individual flicker coefficients and harmonic currents defined. This enhancement allows a comprehensive assessment of network disturbances according to D-A-CH-CZ.

Connection Request - Grid\Co	onnection Request.ElmConreq *			? ×
Basic Data	Harmonics	Commutation notches	Interharmonic voltages	ОК
D-A-CH-CZ	Installation	Voltage changes and flicker	Voltage unbalance	
BDEW, 4th Supplement	Loads			Cancel
VDE-AR-N 4105	Input mode	Motor Data 🗸		Jump to
Description	Apparent power change, dSa	100, KVA Rated voltage,	Ur 1, V	
	Angle, phi	0, deg Rated current, I	ir 19245,01 A	
	Displacement factor, cos(phi)	1, ind. V Starting current	t ratio (la/lr) 3,	
	Load technology Transformer characteristic numb	3PH V 5 or 11 V		
	Flicker Repetition rate	0,1 1/min		
	Shape factor	1,		
	Generating units			
	Name Type	TypFlicker kA d	hi_f phi_a r SrEtot SrE leg deg 1/min	
	▶ 1 Wind farm DFIG	10, WTG Flicker Coeffic 2,887	11, 0, 0,1 Use p60 U.A	
	<		· · · · · · · · · · · · · · · · · · ·	
	SrEtot (for switching-related vol SrEmax (for flicker)	tage changes) 0, MVA 0, MVA		
	Note: Flicker data should only in	iclude maximum values		

Figure 4.15: Connection Request element dialog, D-A-CH-CZ page

4.9 Distribution Network Tools

In *PowerFactory 2017*, a Genetic Algorithm has been introduced for Tie Open Point Optimisation and Phase Balance Optimisation.

The Simulated Annealing algorithm, which was introduced in *PowerFactory 2016* for Phase Balance Optimisation, has now also been included as an optimisation method for Tie Open Point Optimisation.

Tie open point and phase balance optimisation problems are difficult to solve with classical methods, as they have the following properties:

- · The objective function is not differentiable
- The states are "discrete"
- · The objective function usually has many local minima
- · The space of potential solutions is huge

For problems with such properties, metaheuristic algorithms like the Simulated Annealing or Genetic Algorithms are well suited:

- Simulated Annealing uses a random process in order to approach the optimum during a "cool down" of the system.
- Genetic Algorithms, similar to the evolutionary mechanism of nature, improve the objective by applying mutation and crossover to an evolving population of appropriately chosen individuals, which represents the specific structure of the optimisation problem.

The edit dialogs of the Tie Open Point Optimisation and Phase Balance Optimisation commands, including the new optimisation methods are shown if figure 4.16.

Tie Open Point Optimisation - Stu	udy Cases\2 - Tie Open Point Optim	isation\Tie Open Point Optimisati	ion.ComTieopt * ? ×	
Basic Options Constraints	Feeders C All Feeders		Execute	
Switching options	Selected Feeders Feeding points	 ie Open Point Optim Feed 	Close Cancel	
Reliability Explore meshes		ie Open Point Optim Feet		
Simulated annealing	Objective Function Minimisa	tion of Losses	<u> </u>	
Genetic algorithm Random number generation	Method Explore meshes iteratively			
Output	 Simulated annealing (stocka) Genetic algorithm (stochast) 			
		c optimisation)		
	Network Representation G Balanced, positive sequence		udy Cases\2 - Tie Open Point Optimisation\Phase Balance Optimisation.ComBalance	? ×
	C Unbalanced	Basic Options	Feeder 💌 🔸	Execute
		Large loads / generators first Simulated annealing	Objective function Minimise average power unbalance	Close
		Genetic algorithm	C Minimise power unbalance at feeding point	Cancel
		Random number generation Output	Load Flow Calculation • isation\Load Flow Calculation	
			Method G Large loads and generators first	
			Simulated annealing (stochastic optimisation) Genetic algorithm (stochastic optimisation)	
			Allow phase permutation	
			Loads	
			 ✓ Generators ✓ Branch elements (transformers, lines,) 	

Figure 4.16: Tie Open Point Optimisation and Phase Balance Optimisation dialogs

4.10 Outage Planning

In *PowerFactory 2017*, a new module ² for managing and modelling of outages has been implemented.

The new methodology works on the principle that in the scenario, the network is intact. When the new Planned Outage objects (*IntPlannedout*) are applied, the network changes are just held in memory. Thus, resetting of outages becomes straightforward. All calculations will take account of applied changes such as switch positions and earths.

In addition to this, there is now the possibility to add a range of associated actions to an outage, such as additional switch actions, transformer tapping and power transfer (see section 4.3), which will subsequently be enacted whenever the outage is applied. A "record" mode is provided, which lets the user define events such as switch operations simply by carrying out the open and close actions via a diagram or filter. Figure 4.17 shows the new Planned Outage object.

²The module *Outage Planning* will be released as part of the *Transmission Network Tools* and the *Distribution Network Tools* packages, respectively.

The outages can be manually applied as long as a study case is active, but there is also a project setting whereby the user can opt to always automatically apply all relevant outages upon activation of a study case.

Planned Outage - Outage	ss\Gen Outage SE_PV_1.IntPlannedout	? ×
Basic Data Description	Name Gen Outage SE_PV_1	ОК
Description	☐ Ignored	Cancel
	Start Time 04.01.2016 09:00:00	Apply
	End Time 17.10.2016 15:00:00	Reset
	Priority 1	Start Rec.
	Outaged components:	Events
	Components	
	► 1 SE_Trf_PV1	
	2 * SE_PV_1	
	Mark in Graphic	
	Outaged Comp. Events Affected Comp.	
	Number of events	
	Hamber of events	
1		

Figure 4.17: Planned Outage object

A new Outage Management toolbar has been provided (see figure 4.18), to allow the user to easily manipulate the planned outages within the project; a reporting function is also included.

▼ 📅 🧒 📅 🖺									
110 kV 🗸 ABC 🗸 🖶 🖷 🖺 ¥	C.								
Please select Planned Outa	ge to apply.	4						?	×
© [] 2 🗇	* 🗈 🖩 🗋 ∞		76 2	3 🖉				ОК	
Name	In Folder	Grid	lgnored	Start Time	End Time	Priority Com	por	Cancel	-1
► ► Gen Outage SE_P)16 09:00:00	16 15:00:00	1 SE_Tr		Cancel	
► NE_Lne_02_03-1	Outages			16 08:00:00		1 NE_L		Filter	
> NW-SW_Lne_01	Outages)16 00:00:00	16 23:59:00	1 NW-9			
► SE_Lne_02_01-1	Outages			16 12:00:00	16 12:00:00	1 SE_Ln			
	Outages)16 08:00:00	16 15:00:00	1 SW_L	v .		

Figure 4.18: Using the Outage Planning Toolbar

The existing functionality, of Outage objects applied to a scenario, is still supported.

4.11 Reliability Analysis

Reliability Assessment now offers several new functionalities:

- Protection maloperation
- · Backward Recovery of feeders in primary substations
- · Reliability Assessment within meshed networks
- · Enhancements in reporting
- Additional scripting functionalities for contingencies
- Option to define momentary interruption time for the SAIFI/SAIDI calculation
- · Option to replace melted fuses during restoration

In the following subsections some of these new functionalities are detailed.

4.11.1 Protection Maloperation

In *PowerFactory 2017* two new failure modes for Reliability Analysis are added, the *spurious protection operation* and the *backup protection maloperation*.

The backup protection maloperation can occur after a short-circuit for reasons that include:

- Insufficient protection adjustment
- Measurement errors
- Wrong direction decisions
- Transformer saturation
- Damages to the protection device

The spurious protection operation models the opening event of a breaker without any preceding shortcircuit.

4.11.2 Backward Recovery of Feeders in Primary Substations

For **PowerFactory 2017** the restoration algorithm is enhanced with an option which allows the restoration through a substation. This function is called "Backward Recovery". The algorithm checks for the best feeder to resupply the substation and the interrupted feeders. This can improve the restoration quality for a loss of a substation significantly.

Figure 4.19 show an example of a substation where an outage has occurred on the supply transformer. Therefore the external grid is disconnected. In this example, with the new Backward Recovery option selected, the isolated Feeder 1 is resupplied backward through Feeder 3.

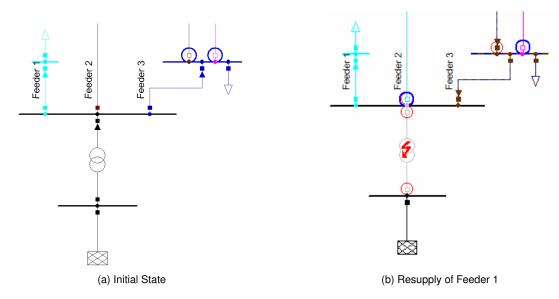


Figure 4.19: Example of Backward Recovery

4.11.3 Reliability Assessment within Meshed Distribution Networks

This section refers to the *Distribution Mode* of the Reliability Analysis which implements the Optimal Power Restoration strategies. *PowerFactory 2017* meets the objective to run Reliability Assessment in weakly meshed distribution networks, with a restoration that considers thermal, as well as voltage limits. Examples of possible topologies of meshed networks that are suitable for reliability assessment are illustrated in the following figures.

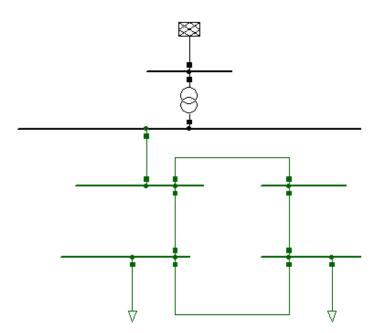


Figure 4.20: Configuration 1, mesh within feeder

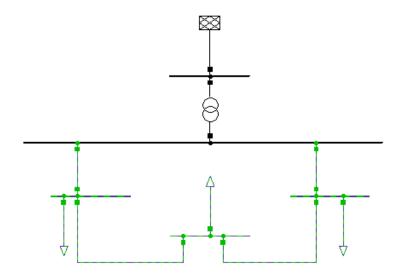


Figure 4.21: Configuration 2, mesh containing two feeders starting from the same terminal

In the case shown in figure 4.21, there are again two feeders defined from one supply point.

4.12 RMS/EMT Simulation

4.12.1 Power Transfer Events in RMS simulations

Power Transfer Events (*EvtTransfer*), i.e. demand transfers defined on a relative basis, are now supported in RMS simulations. Section 4.3 describes the new object.

4.12.2 Simulation Scan: Fault Ride Through

A new simulation scan module has been developed for *PowerFactory 2017*. With this *Fault Ride Through* module it is possible to monitor the simulation using a user-specified curve definition. The edit dialog of the module is shown in figure 4.22

Fault Ride Through S	Scan Module	\FRT_OK\Sim	ulation Scan\Fault Ride	Through Scan	Module.Sc	? ×
C Ignored Scan location Whole system C User defined Class name	ElmTerm	Grid\S10_90k\	∧S10 BB			OK Cancel
Variable	m:u					
Settings						
FRT table:		FRT chara	acteristic			
Time	Value	1,0000 [p.u.]		~		
1	0, 1,					
	0, 1, 0,1 1,	0,6667	7			
	0,1 0,15			/		
		0,3333				
	17 0,15					
► 5 0,	32 0,9	0.0000				
		0.	, 000 0,140	0,280	[s] 0,420	
		~	 FRT characteristic Threshold 			
<	>		- Inresnold			
Threshold	0,5		Duration	0,	s	
Activation time			Action			
Hours	0	h	Display message			
		-	C Stop simulation			
Minutes	0	min				
Seconds	0,	s				
Time step	0,01	s				

Figure 4.22: Fault Ride Through Scan Module

This module is particularly useful when verifying, for example, if the voltage of the complete system or of a specific terminal fulfils the fault ride through characteristic defined by the regulator's standards. The definition of the FRT curves is done in a simple and flexible way; different types of curves can be defined, as shown in figure 4.23.

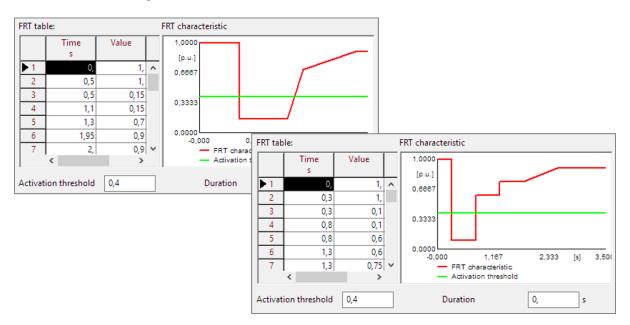


Figure 4.23: Fault Ride Through Characteristics

4.12.3 Retention of Load Flow results after Initialisation

When the Calculation of Initial Conditions is carried out at the start of a simulation, a load flow needs to be run. If many simulations are to be performed and therefore the initial conditions must be repeatedly recalculated, the repeated load flows could cause a considerable time overhead. An enhancement in *PowerFactory 2017* provides a performance improvement by offering an option in the Calculation of Initial Conditions to reuse the previous load flow results. If the option is selected, the load flow results from the calculation of initial conditions are retained and used in subsequent initial conditions calculations.

4.12.4 Additional DSL functions

DSL modelling has been improved with the addition of several new functions, which will streamline the DSL code :

- PI controller according to IEEE 421.5 (2005) standard picontrol_const (state, min, max, prop_input)
- Gradient limiter gradlim_const (input, min, max)
- Moving average filter movingavg(input, Tdel, Tlength)
- Return value at last valid iteration lastvalue (input)
- Return simulation type rms()
- Return balanced/unbalanced network representation mode balanced()
- Constant values of on and off expressions on the function *select* select_const(...)
- Constant values of on and off expressions on the function *selfix* selfix_const(...)
- Constant values of limits on the function *lim* lim_const(...)
- Constant values of limits on the function *limstate* limstate_const(...)
- Constant time values on the function *picdro* picdro_const(...)

4.12.5 Support of external models acc. to IEC 61400-27-1 (2015)

It is possible now to directly interface external models compliant with IEC 61400-27-1 Annex F specifications. The models can be used for both RMS and EMT type simulations (provided they are appropriately designed and intended for RMS or EMT).

PowerFactory provides the built-in DSL (*DIgSILENT* Simulation Language) model development environment which allows the creation of user defined dynamic models. Although DSL remains the recommended approach for developing models, we recognise the requirements of customers who have to develop simulation models of the same equipment in multiple simulation tools. Creating the same

model in each simulation tool can be time-consuming and may also lead to slightly different implementations/results. The generic IEC interface provides an alternative solution by defining a common interface which can be interpreted by any third party software whilst using the same simulation model core equations.

Note: As with any other externally compiled model (e.g. based on digexdyn or digexfun interfaces), the IEC 61400-27-1 models are not supported by the Modal Analysis Toolbox. The only exception is made for compiled models developed based on *DIgSILENT*'s C-interface (further information on the DSL to C-interface can be found in the *PowerFactory* User Manual).

5 Power Equipment Models

5.1 4-Winding Transformer Model

PowerFactory 2017 comes with a built-in model for a four-winding transformer, *ElmTr4*, which connects to four cubicles in the network.

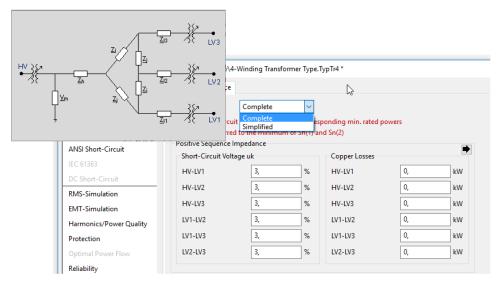
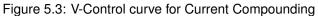


Figure 5.1: Four-winding transformer

Winding connections Y, YN, D, Z and ZN are supported, as are autotransformer configurations. There are also two options for impedance data input: complete (winding-to-winding) and simplified (per-winding).


The four-winding transformer is supported for all calculation functions.

5.2 Automatic Tap Adjustment according to Compounding


Transformer voltage control has been enhanced in *PowerFactory 2017* through the introduction of a Current Compounding compensation method, designed to control transformer voltages within acceptable limits by increasing the voltage set point as the load current increases. For transformers operating with automatic tap changing, set to control voltage at the local setpoint, there is an existing Compensation option. This has been extended to include the new current compounding capability, as shown in figure 5.2 below. The compounding can be based on apparent, active or reactive current or power.

Controller Time Constant	0,5 s
Compensation	current compounding ~
LDC/Current Compounding C	ompensation
Compounding	apparent current V Tolerance (+/-) 2, %
V-Control-Curve	▼ → V-Control-Curves\V-Control-Curve

Figure 5.2: Current Compounding selection

The voltage is controlled according to a user-defined voltage control curve:

5.3 Harmonic Filter Element

The options for modelling harmonic filters are extended in *PowerFactory 2017* with the introduction of the Harmonic Filter Element *ElmFilter*.

Various technologies are supported dependent upon the number of phases:

Single Phase	Two Phase	Three Phase
PH-PH	'Y'	'D'
PH-N	'YN'	'Y'
PH-E		'YN'

Table 5.1: Winding configurations

The figure below shows the filter types available. Although it was possible in earlier versions of **Power-Factory** to model filters using the shunt object, the introduction of the Harmonic Filter element now also makes it possible to represent double-tuned filters.

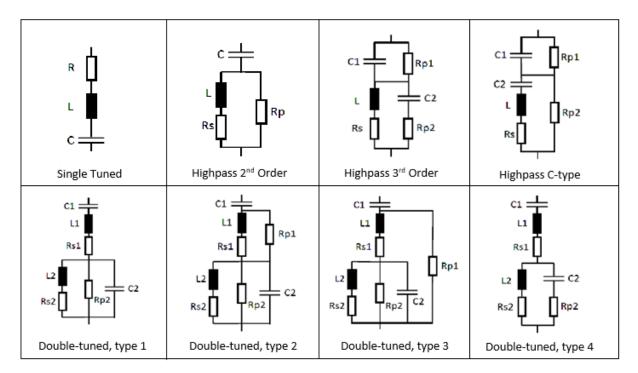


Figure 5.4: Harmonic Filter Configuration Options

Existing modelling using the shunt object *ElmShnt* will of course continue to be supported.

5.4 Step-Voltage Regulator

A new Step-Voltage Regulator element *ElmVoltreg* has now been made available, to provide automatic tap control with line drop compensation. Type A and Type B step-voltage regulators (i.e. with the tap on the Load side and Source side respectively) are supported, and the following configurations are available:

- Star, 3-phase (one tap-controller)
- Star, 3 x 1-phase (three independent tap controllers)
- Closed delta (three single-phase regulators)
- Open delta (two single-phase regulators)

The technology is supported for Load Flow and RMS/EMT simulations, and includes, for forward power flow only, voltage limiting protection. There are also several control modes supported for reverse power operation (these are not available for EMT simulations):

- Locked-forward
- Bi-directional
- Co-generation
- Reactive Bi-directional

5.5 Power Frequency Controller - Merit Order Mode

As described above in section 4.1.3, the existing load flow option for Active Power control using a Power Frequency Controller has been extended, to allow merit order dispatch of the group of slack generators. This makes it possible for example to model interarea power exchanges based on merit order schemes.

This function will be available for the following elements: synchronous machines (*ElmSym*), static generators (*ElmGenstat*) and PWM-converters (*ElmVscmono* and *ElmVsc*), where the merit order of each machine can be defined as shown in figure 5.5. A number of generators may have the same merit order.

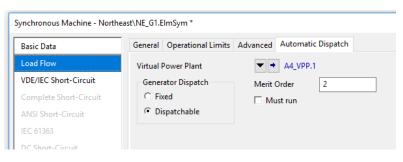


Figure 5.5: Generator Merit Order

A new setting in the Power Frequency Controller can then be selected to enable the merit order dispatch.

Basic Data	Control I	Mode		Frequency Control		~	ОК
Load Flow							Cance
VDE/IEC Short-Circuit	Busbar f	or Frequency Measu	rement	 Northwest\NW_03¹ 	NW_03_BB	31	cunce
Complete Short-Circuit							
ANSI Short-Circuit							
EC 61363							
DC Short-Circuit							
RMS-Simulation							
Harmonics/Power Quality	Active	Power Distribution					
	C Acc	ording to Nom. Pov	ver				
Optimal Power Flow	C Ind	ividual Active Power					
Reliability	C Acc	ording to Dispatche	d Active Pow	/er			
Generation Adequacy		ording to Merit Ord					
Description							
beschpiton	E	Machines ElmSym,ElmGensta	Merit Orde	er			
	1	SW_G1		1	^		
	2	SW_G2		2			
	3	NE_G2		2			
	4	SW_G3		3			
		SW_G6		1			
		NE_G7		1	_		
		NE_G8		2	_		
	8	SW_G7		1			
		SW G8	-	2			

Figure 5.6: Selecting Merit Order power distribution in the Power Frequency Controller

Generators with the highest merit order priority (lowest number) will be dispatched first, as far as their operational limits allow, then the generators with successively lower merit order priorities as required.

5.6 Line Types for Busbar Trunking Systems

For industry applications with multiple power offtakes from a busbar trunking system, a set of line types is now provided in order to represent a number of standard 3-phase-N-PE busbar trunking systems using 3-phase-N line models.

5.7 PWM Converter - Third Harmonic Injection

In *PowerFactory 2017* the PWM Converter element (*ElmVsc*) supports modulation with third harmonic injection. Three types of third harmonic injection modulation techniques are available. Modulation techniques with third harmonic injection extend the linear range of operation, resulting in a better utilisation of the DC-link voltage. Reference signals for the PWM converter with and without third harmonic injection are shown in figure 5.7.

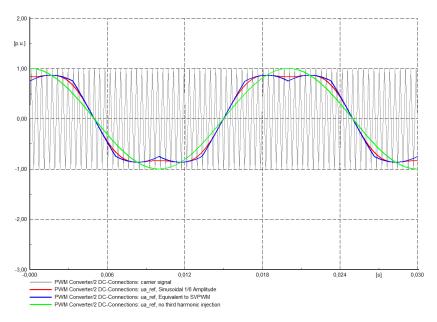


Figure 5.7: PWM Converter reference signal. Pulse width modulation index is equal to 1

5.8 Fuse with Neutral has Option to Interrupt Neutral

A fuse model with neutral now has the option to interrupt the neutral upon operation, as shown below:

🔲 Open all pha	ses automatic	ally				
No. of Phases	3 ~			No. of Neutrals	1 ~	
🔲 Fuse interrup	ots neutral wire	2				
Fuse Type Compute Tim ⓒ Minimum ⓒ Total Clear	Melt Curve		~	Device Number	1	
a - b - c -	Terminal i	<i>Ø</i> -	Termi	nalj a c	5 \ Cub	_1(1)

Figure 5.8: Fuse Option for interrupting neutral

6 Scripting and Automation

6.1 Text Editor

PowerFactory 2017 comes with a new text editor. This editor, besides improving usability, introduces new features that simplify the script-writing process.

The many new features include, bracket match checking and automatic bracket insertion, zoom-in and zoom-out, highlighting selected words throughout the script, changing font styles and definition of bookmarks within the code.

Additionally an **auto-completion** function has been introduced; this function shows all the possible options when a word is written, which is particulary helpful considering the number of functions/methods available.

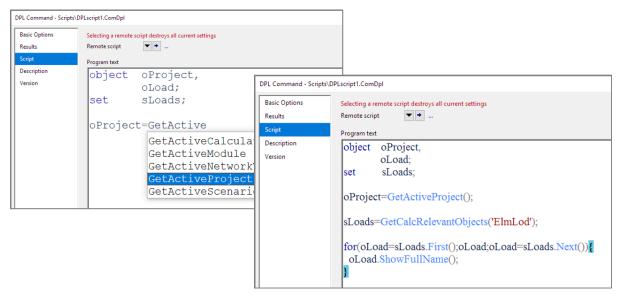


Figure 6.1: Text Editor examples

The text editor is available for DPL, DSL and QDSL; it can also be used for writing Python scripts.

6.2 Add-On Modules

In response to user requests for more flexible calculation options, *PowerFactory 2017* offers a new concept of Add-On Modules.

With this framework, it is possible for users to implement their own functions which are then integrated smoothly into *PowerFactory* as if they were built-in modules.

More precisely, an Add-On Module (*ComAddon*) consists of a calculation script (DPL or Python), together with a set of (user-definable) result variables, plus (optionally) a default result box configuration and a potential default colouring mode. See figure 6.2 for such a setup.

The user-definable result variables can be associated per class with the elements. Variables are defined by name, including data type, unit, and description. Supported data types include integer, double, string, object (reference), arrays and matrices — for branch elements, each of which can be defined as per phase and/or per connection quantities. Technically, a series of new DPL and Python methods are provided that allow to instantiate and assign these variables in the corresponding calculation script.

Modu	le Name	Max.	Voltage C	alculati	on						Execute	
nput	parameter	rs:								-	Close	
	Туре	Name	Va	lue	Unit		Description				Close	
							0.000000000				Cancel	
1	double	StartTime EndTime	0		h	-						
3	double	StepSize	0.5		h							
-	avoure	Stepsize	0.5						-8			L .
												L .
Acdu	le Key	MaxVolt	1.0	ble Defir	nition of	Add On - S	tion\Calculate tudy Cases\Study (n - Study Cases\St	State State State	and the second second	-		1
Modu	le Key	MaxVolt	c. Va	ble Defir Variable	nition of Definition able Def	Add On - Si on of Add O inition of A e Definition		udy Case\A es\Study C	Ndd On\Terr Me\Add On dy Cme\Ad	mina \\Teg	Lintāddonvar minaLintāddo	nvars.*
Modu	le Key	MaxVolt	a Ve	ble Defin Variable Variable Variable Variable Variable Variable	nition of Definitio able Def Variabl	Add On - Si in of Add Q inition of A e Definition ame	tudy Cases' Study (n - Study Cases) Sh dd On - Study Case of Add On - Study	udy Case\A es\Study C	Add On\Tem Me\Add On	mina \\Teg	Lintāddonvar minaLintāddo	nvars.*
Modu	le Key	MaxVoit	a Ve	ble Defin Variable Variable Variable Variable Variable Variable	Definition able Def Variable Classn	Add On - Si in of Add Q inition of A e Definition ame	tudy Cases' Study (n - Study Cases) Sh dd On - Study Case of Add On - Study	udy Case\A es\Study C Cases\Stu	Add On\Terr ase\Add On dy Case\Ad	mina \\Teg	EintAddonvar minaEintAddo n\TerminaEintu	nvars.*
Modu	ile Key	MaxVolt	a Ve	ble Defin Variable Va Va Va Va	Definition able Def Variable Classn	Add On - Si on of Add O inition of A e Definition ame es:	tudy Cases\Study (n - Study Cases) St dd On - Study Case of Add On - Study ElmTerm Description	udy Case\A es\Study C Cases\Stu	Add Qn\Terr ase\Add Qn dy Case\Ad] 💽 /pe L	min) \\Ten Id Or	LintAddonvar minaLintAddo n∖TerminaLint/	nvars.*
Modu	le Key	MaxVoit	a Ve	ble Defin Variable Variable Variable Variable Variable Variable	Definition of Definition able Def Variable Classen Variable	Add On - Si on of Add O inition of A e Definition ame les: Name	tudy Cases\Study (n - Study Cases\St dd On - Study Case of Add On - Study ElmTerm	udy Case\A es\Study C Cases\Stu	Add On\Terr AlecAdd On dy Cale\Ad ype L	mina NTen Id Or Unit	Lintäddonvar minsLintäddo NTerminsLint/ Initial Value	nvars.*
Modu	le Key	MaxVolt	a Ve	ble Defin Variable Va Va Va Va	Definition of Definition able Def Variable Classen Variable	Add On - Si inition of Add O inition of A e Definition ame es: Name u_max	tudy Cases/Study (n - Study Cases/St dd On - Study Case of Add On - Study ElmTerm Description Max Voltage pu	udy Case)A cases\Study C Ty double double	Add On\Terr AlecAdd On dy Cale\Ad ype L k	Unit V	LintAddonvar minaLintAddo i\TerminaLint/ linitial Value 0.	dvars *
Modu	le Key	MaxVoit	a Ve	ble Defin Variable Va Va Va Va	hition of Definition able Def Variabl Classe Variabl	Add On - Si an of Add O inition of A e Definition ame les: Name u_max U_max	tudy Cases/Study (n - Study Cases/St dd On - Study Case of Add On - Study ElmTerm Description Max Voltage pu Max Voltage kV	udy Case)A cases\Study C Ty double double	Add On\Terr AlecAdd On dy Cale\Ad ype L k	Unit V	LintAddonvar minaLintAddo NTerminaLint/ Initial Value 0. 0.	nvars.*
Medu	le Key	MaxVolt	a Ve	ble Defin Variable Va Va Va Va	hition of Definition able Def Variabl Classe Variabl	Add On - Si an of Add O inition of A e Definition ame les: Name u_max U_max	tudy Cases/Study (n - Study Cases/St dd On - Study Case of Add On - Study ElmTerm Description Max Voltage pu Max Voltage kV	udy Case)A cases\Study C Ty double double	Add On/Terr ase\Add On dy Case\Ad gy Case\Ad p p k k d d	Unit V	LintAddonvar minaLintAddo NTerminaLint/ Initial Value 0. 0.	nvars * Addonvars
Medu	le Key	MaxVoit	a Ve	ble Defin Variable Va Va Va Va	hition of Definition able Def Variabl Classe Variabl	Add On - Si an of Add O inition of A e Definition ame les: Name u_max U_max	tudy Cases/Study (n - Study Cases/St dd On - Study Case of Add On - Study ElmTerm Description Max Voltage pu Max Voltage kV	udy Case)A cases\Study C Ty double double	Add On/Terr ase'Add On dy Case'Ad] 💽 P k d	Unit V	LintAddonvar minaLintAddo NTerminaLint/ Initial Value 0. 0.	nvars * 4ddonvars ?

Figure 6.2: Add-On Module with a set of user-defined variables

The function defined by an Add-On Module is smoothly integrated into *PowerFactory*, in the sense that the result variables can be accessed via flexible data pages, single line diagram result boxes, or via scripting languages, interfaces, etc... The extended quantities are accessible with a prefix x: (see figure 6.3 below).

This flexible tool can be used for a range of different applications, for example:

- Simultaneous calculation and viewing of, for example, load flow and short-circuit calculation results
 together
- · Sweeps across time and cases in order to, for example, determine maxima or minima
- · Post-processing of calculation results

Customised Add-On Modules can be stored and deployed centrally and accessed via the User-Defined Tools toolbar.

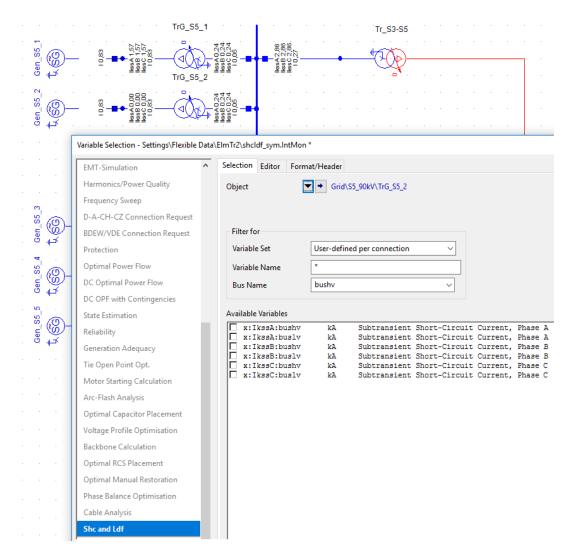


Figure 6.3: Access to calculation quantities of an Add-On module

7 Interfaces

7.1 CGMES Converter

7.1.1 CGMES Conversion Performance Improvements

With *PowerFactory 2017* general improvements for the CIM to Grid and Grid to CIM Conversion have been introduced. These improvements are particularly evident in complex networks and automatic model conversions. Furthermore the duration of the Grid to CIM conversion can be greatly reduced by executing a memory only export, as described in section 7.1.3.

7.1.2 Incremental Load of CIM data

In order to guarantee persistent IDs in CGMES, a reference model must be available in the **Power-Factory** master model in the database. This reference CIM data significantly increases the size of the project, but is not needed by most of the **PowerFactory** users.

Therefore *PowerFactory 2017* no longer loads the CIM data when activating the project. Instead this data is only loaded upon the first access of the CIM data. This way the activation time of a network model is improved.

7.1.3 Memory Only Export

The CGMES export is split into two steps:

- Grid to CIM conversion this creates CIM data on the database
- · CIM data export this exports the CIM data to the hard drive

However, in automated processes, like DACF and IDCF, the CIM data is not needed on the database and would be deleted after the export. Therefore a new scripting command has been introduced for the Grid to CIM conversion, which does not create the database objects, but exports the data directly to the hard drive.

This way delays due to database synchronisation can be prevented. As a result the total time needed can decrease markedly. This effect increases the bigger the network and the slower the connection to the database is.

7.1.4 Automatic Handling of Equivalent Boundary Network Injections

One of the main purposes of CGMES is to use merged networks. An exported model is typically calculated while being connected to surrounding networks. Since the exported grid model does not include the connected networks, an equivalent boundary flow must be modelled. Therefore EquivalentInjection objects are used in CGMES.

PowerFactory 2017 automatically detects such injections on the boundary and creates the CIM data accordingly as shown in figure 7.1.

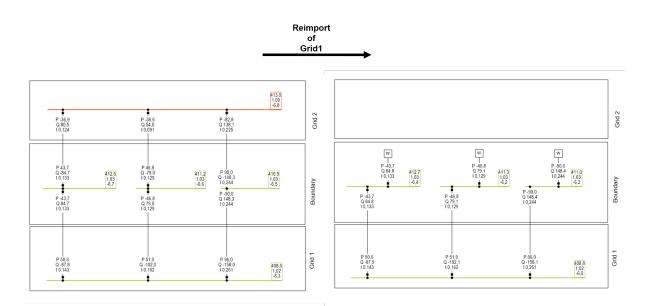


Figure 7.1: Reimport of a network model with equivalent injections

These network injections of course are only to be used when the corresponding foreign network is not available. Therefore another mechanism has been introduced, which will automatically set the equivalent network injections of both networks out of service. This way after the CGMES conversion only networks not explicitly modelled are represented by the equivalent injections.

7.2 Integral Export Converter

With **PowerFactory 2017** projects can be exported in *Integral 7* xml format. *Integral* is a network calculation software provided by *FGH* and is commonly used by German Transmission System Operators in long-term network planning. For more flexibility in the data exchange between neighbouring TSOs as well as connected DNOs the existing *Integral* Import converter is now complemented by an *Integral* Export Converter.

The *Integral* Export comprises the most frequently used network devices with their load flow and short circuit settings. Schematic network diagrams are converted in addition to the electrical data.

With regard to the structural and modelling differences between *PowerFactory* and *Integral* projects, a number of options are available so that the user's *PowerFactory* network model data can be converted in the most appropriate way:

- · Should several networks be combined to one aggregated network?
- · Should graphical or topological representation be preferred when converting substation topology?
- Should actual or input values be converted for the active and reactive power of generation or demand objects?
- A scaling factor can be entered for graphical representation.

The quality of the exported *Integral* network model and its graphical representation in *Integral* strongly depends on the set-up of the original network model in *PowerFactory*, in particular with regard to the topology of substations and bays. *PowerFactory* allows for very flexible topology configuration while *Integral* applies fixed sets of admissible configurations. The user should obey certain modelling rules to achieve properly matching export results. *DIgSILENT* will provide a set of recommended rules.

7.3 OPC Unified Architecture

The communication between **PowerFactory** and external devices or applications is an important part in the area of automation. The OPC Data Access interface, often used for this purpose, is hard to administer and based on deprecated windows components. In order to provide an up-to-date communication interface, a new connection object based on the OPC Unified Architecture standard has been developed for **PowerFactory 2017**. This new implementation offers several benefits compared with the old OPC Data Access protocol, especially in terms of security, setup and maintenance. The configuration of such a connection is similar to the setup of an OPC Data Access connection in previous **PowerFactory** versions. Hence, the user can easily switch between the protocols if necessary. The new features are provided by the introduced *External OPC Link* object (*ComOpc*) shown in figure 7.2.

I	External OPC Link - Study	Cases\0 - Base Model\E	xternal OPC Lin	k.ComOpc	?	×	
	General	Link To OPC Unified Architecture					
	Options	Mode TDS ~					
	Authentication	Current Status Sto	opped		Can	cel	
		Server top - level URL		opc.tcp://localhost			
		Server sub - level URL		freeopcua/server/			
		Server Port		4844			
		Path to root element		Objects			
		Discover					

Figure 7.2: External OPC Link edit dialog

8 Installation and Licensing

8.1 Support of Floating Licences

With *PowerFactory 2016* new licensing technology was introduced. Initially, floating licences were not supported in *PowerFactory 2016* due to constraints in this technology. However, this problem was resolved in Service Pack 4 of *PowerFactory 2016* and floating licences are also available in *PowerFactory 2017*. The Floating Licence function allows the user to continue working without access to a licence server by 'checking out' a temporary licence which is then stored on the user's computer and may be used for up to 30 days, after which it is destroyed and the licence restored in the licence server. It should be noted that the Floating Licence capability is itself a separately licensed feature and so will not be available by default when *PowerFactory 2017* is installed.

DIGSILENT Company Profile

DIgSILENT is a consulting and software company providing engineering services in the field of electrical power systems for transmission, distribution, generation and industrial plants.

DIgSILENT was founded in 1985 and is a fully independent, privately owned company located in Gomaringen/Tübingen, Germany. DIgSILENT continued expansion by establishing offices in Australia, South Africa, Italy, Chile, Spain, France and the USA, thereby facilitating improved service following the world-wide increase in usage of its software products and services. DIgSILENT has established a strong partner network in many countries such as Mexico, Malaysia, UK, Switzerland, Colombia, Brazil, Peru, China and India. DIgSILENT services and software installations have been conducted in more than 140 countries.

DIgSILENT PowerFactory

DIgSILENT develops the leading integrated power system analysis software PowerFactory, which covers the full range of functionality from standard features to highly sophisticated and advanced applications including wind power, distributed generation, real-time simulation and performance monitoring for system testing and supervision. For wind power applications, PowerFactory has become the power industry's de-facto standard tool, due to PowerFactory models and algorithms providing unrivalled accuracy and performance.

DIgSILENT StationWare is a reliable central protection settings database and management system, based on the latest .NET technology. StationWare stores and records all settings in a central database, allows modelling of relevant workflow sequences, provides

quick access to relay manuals, interfaces with manufacturer-specific relay settings and integrates with PowerFactory software, allowing powerful and easy-to-use settings coordination studies.

PowerFactory Monitor is a flexible performance recording and monitoring system that copes easily and efficiently with the special requirements for system test implementation, system performance supervision and the determination and supervision of connection characteristics. Numerous monitoring systems installed at various grid locations can be integrated into a Wide-Area-Measurement-System (WAMS). PowerFactory Monitor can be fully integrated with PowerFactory software.

DIgSILENT Consulting

DIgSILENT GmbH is staffed with experts of various disciplines relevant for performing consulting services, research activities, user training, educational programs and software development. Highly specialised expertise is available in many fields of electrical engineering applicable to liberalised power markets and to the latest developments in power generation technologies such as wind power and distributed generation. DIgSILENT has provided expert consulting services to several prominent PV and wind grid integration studies.

DIgSILENT GmbH Heinrich-Hertz-Straße 9 72810 Gomaringen Germany T +49 7072 9168-0 F +49 7072 9168-88 mail@digsilent.de www.digsilent.de